
1. Introduction
The tropical oceans are influenced by multiple processes including long-term trends associated with global 
warming, ocean dynamics including oceanic Rossby and Kelvin waves, and air-sea interactions both within and 
between ocean basins. These processes drive seasonal to interannual variability as well as decadal trends in the 
tropical oceans as indicated by changes in sea surface temperature (SST) and sea surface height (SSH). Examples 
of the ocean variability include the long-term warming of the tropical Indian Ocean, primarily in response to 
increasing greenhouse gasses (Dong et al., 2014; Du & Xie, 2008); SST oscillations on 2–7 yr time scales in the 
tropical Pacific associated with El Niño-Southern Oscillation (ENSO; e.g., Neelin et al., 1998; Wang et al., 2017) 
and the “atmospheric bridge,” where ENSO-driven atmospheric teleconnections influence remote air-sea inter-
actions, including the tropical Indian and Atlantic oceans (e.g., Alexander et al., 2002; Chiang & Sobel, 2002; 
Klein et al., 1999).

Interactions between tropical ocean basins have been well studied, as recently reviewed by Wang (2019), Cai 
et al. (2019), and Keenlyside et al. (2020). The atmospheric bridge acts to warm the northern Tropical Atlantic 
Ocean in boreal spring following an ENSO event (Curtis & Hastenrath, 1995; Enfield & Mayer, 1997), while it is 
a main driver of the Indian Ocean dipole during boreal summer and fall when ENSO events begin, and basin-wide 
anomalies when events peak in winter (Baquero-Bernal et  al.,  2002; Shinoda, Alexander, & Hendon,  2004). 
ENSO-driven variability in the Indian Ocean is due to changes in surface fluxes and to ocean dynamics, includ-
ing changes in upwelling west of Indonesia and wind-driven Rossby waves (Chambers et al., 1999; Shinoda, 
Hendon, & Alexander, 2004; Xie et al., 2002). While ENSO is primarily governed by air-sea interaction in the 

Abstract The trend, connections between tropical ocean basins and dynamical processes on sea surface 
temperature (SST) and sea surface height (SSH) forecast skill are investigated using a linear inverse model 
(LIM) framework. The warming trend has a strong influence on 6-month SST forecast skill in the Indian 
Ocean, Western Pacific, and north tropical Atlantic, but little effect on El Niño-Southern Oscillation (ENSO) 
prediction. ENSO strongly impacts the SST forecast skill in all three ocean basins including most of the Indian 
Ocean and the north tropical Atlantic. Without interactions with the Indian Ocean, the 6-month SST forecast 
skill is substantially reduced in the western tropical Pacific and SSH skill decreases in the central Pacific. 
Atlantic and Indian Ocean interactions with the Pacific enhance ENSO forecast skill at 6–12 months leads. 
The Indian Ocean influences SSH in the eastern Atlantic, while the tropical Atlantic affects SST forecasts in 
portions of the Indian Ocean.

Plain Language Summary Predicting ocean conditions is important for marine ecosystem 
management and because the ocean temperatures, especially in the tropics, strongly influence weather patterns 
on seasonal time scales. Here, we use a statistical model to examine how processes, such as the long term trend 
and interactions between the tropical Atlantic, Pacific, and Indian oceans influence forecast skill. Warming of 
the ocean strongly influences 6-month sea surface temperature forecasts over most of the Indian Ocean and the 
North tropical Atlantic but not in the central and eastern Pacific. Variability in the tropical Pacific Ocean, much 
of which is associated with the El Niño-Southern Oscillation (ENSO) phenomena, strongly influences forecast 
skill in all three ocean basins. Both the tropical Atlantic and Indian oceans were found to influence 6–12 month 
ENSO forecasts. Our study also revealed additional connections between oceans including the Indian Ocean’s 
influence on the eastern Atlantic and the Atlantic’s influence on portions of the Indian Ocean and in the Pacific 
off the South American coast, although some of the connections may be associated with the longer term trend.
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tropical Pacific, Indian, and Atlantic SSTs influence the Pacific including the timing, position, and amplitude of 
ENSO events (e.g., Annamalai et al., 2005; Ding et al., 2011; Dommenget & Yu, 2017; Ham et al., 2013; Rodri-
guez-Fonesca et al., 2009; Ruprich-Robert et al., 2017; Wu & Kirtman, 2004). Coupled interactions between the 
tropical Indian and Atlantic Ocean basins may also occur (Kajtar et al., 2017).

The role of tropical basin interactions on potential predictability and actual predictions of ocean conditions has 
received less attention in the literature. Using coupled ocean-atmospheric general circulation models (AGCMs), 
Frauen and Dommenget (2012) and Keenlyside et al. (2013), found that the tropical Atlantic influenced ENSO 
predictability. Results from studies of the Indian Ocean’s influence on ENSO forecasts are mixed, with some 
showing strong effects (Izumo et al., 2010; Luo et al., 2010; Zhou et al., 2019), while others found little impact 
(Frauen & Dommenget, 2012; Jansen et al., 2009). Forecasts from an AGCM-ocean mixed layer model indicated 
that global SST anomalies enhanced SST forecast skill in the north tropical Atlantic, relative to forecasts initial-
ized with just Atlantic SSTs (Chang et al., 2003). Penland and Matrosova (1998) found that including SST anom-
alies in the tropical Indo-Pacific enhanced SST forecast skill in the north tropical Atlantic and Caribbean Sea, 
based on results from observation-based linear inverse models (LIMs). Here, we also use the LIM framework, 
expanding on the work by Penland and Matrosova, by (a) including interactions between all three tropical basins, 
(b) including SSH in addition to SST, and (c) exploring the role of the trend, connections among ocean basins, 
and dynamical processes in the Indian and Atlantic oceans on forecast skill.

2. Methods and Data
2.1. Linear Inverse Model

Linear Inverse models have been used in a wide array of climate applications, including predictions of tropical 
ocean conditions (e.g., Newman & Sardeshmukh, 2017; Penland & Sardeshmukh, 1995). A LIM can be ex-
pressed as:

d𝐱𝐱

d𝑡𝑡
= 𝐋𝐋𝐱𝐱 + 𝐒𝐒𝜼𝜼, (1)

where 𝐴𝐴 𝐱𝐱 is the state vector, 𝐴𝐴 ▲ is the linear matrix operator that provides the deterministic evolution of the system, 
and 𝐴𝐴 ❙𝜼𝜼 is the stochastic noise, which is white in time but can have spatial structure. The matrix 𝐴𝐴 ▲ can be estimated 
from the concurrent and lagged covariances, 𝐴𝐴 ❈(0) and 𝐴𝐴 ❈(𝜏𝜏0) , 𝐴𝐴 ▲ = 𝜏𝜏

−1

0
ln[❈(𝜏𝜏0)❈(0)

−1
] , where the lag 𝐴𝐴 𝐴𝐴0 is set to 

1 month in this study. Given the necessity of having long data records to accurately represent seasonally varying 
𝐴𝐴 ▲ and 𝐴𝐴 ❙ values (Shin et al., 2021), we assumed that they are state-independent; and thus, the ensemble mean fore-

casts at lead 𝐴𝐴 𝐴𝐴 can be obtained from

𝐱𝐱(𝑡𝑡 + 𝜏𝜏) = 𝐆𝐆(𝜏𝜏)𝐱𝐱(𝑡𝑡), (2)

where 𝐴𝐴 ●(𝜏𝜏) = exp(▲𝜏𝜏) is the linear system propagator.

We obtained monthly SST and SSH values on a 1° × 1° grid for the years 1965–2014 from the HadISST v1 data 
set (Rayner et al., 2003) and ORAS4 ocean reanalysis (Balmaseda et al., 2015), respectively. In our LIM, monthly 
SST and SSH anomalies in each basin are treated as separate variables and the state vector 𝐴𝐴 𝐱𝐱 and operator 𝐴𝐴 ▲ can 
be expressed as:
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where subscripts TI, TP, and TA indicate the tropical Indian, Pacific, and Atlantic oceans (Figure 1). Submatrices 
𝐴𝐴 𝖫𝖫A-B represent the interactions between two basins, that is, the impact of basin B on basin A. Interaction between 

basins A and B are further decomposed as:

�A-B =
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(4)

where element 𝐴𝐴 Lx(A)-y(B) denotes the impact of the variable y in basin B on variable x in basin A. Following New-
man (2007), Zhang et al. (2021), and Zhao et al. (2021), the effects of coupling between basins can be removed by 
setting the interaction submatrices = 0. Intra-basin terms can also be suppressed by setting the relevant elements 
to zero.

Following Penland and Matrosova (1998), the LIM framework is also used to design filters for the trend and 
ENSO-related variability. The filters (see Text S1 in Supporting Information S1) involve finding the empirical 
normal modes (ENMs), the solutions to the deterministic portion of the LIM. The trend filter is obtained from a 
single least-damped ENM. The ENSO filter is derived from the pairs of modes (ENMs 4/5 and 9/10) that project 
onto the initial “optimal structure,” the anomaly pattern that exhibits maximum growth of the anomaly variance 
over time, and gives rise to an ENSO event ∼6 months later.

To identify significant large-scale patterns, EOFs normalized by their basin-wide standard deviation, were com-
puted in each domain. The leading three, five, and seven SST and SSH EOFs were retained in the Atlantic, Indian, 
and Pacific oceans, which explain 66.5/66.2, 71.9/64.1, and 79.5/71.8, of the total SST/SSH variance, respective-
ly. The number of EOFs were chosen to maximize skill over the entire tropics, which resulted in using the same 
number of SST and SSH EOFs in each basin. The principal components, the time-varying EOF coefficients, 
comprise the 30-component state vector 𝐴𝐴 𝐱𝐱 in Equation (3).

2.2. Model Experiments Using Reduced LIMs

The LIM framework allows us to isolate the influence of ocean variability and dynamics on SST and SSH predic-
tions. By comparing reduced LIMs with the full LIM we can investigate the role of:

1.  The trend—By removing SST and SSH anomalies associated with the first ENM; using a large ensemble 
of GCM simulations, Frankignoul et al. (2017) found that using ENM1 from a LIM was an effective way to 
identify and remove the long-term anthropogenic forcing, although our focus is on the influence of the trend 
on forecast skill rather than its cause.

2.  ENSO—By removing SST and SSH anomalies associated with ENMs 4/5 and 9/10, which greatly reduces the 
SST anomalies in the NINO3.4 region (5°N–5°S, 170°E–120°W) as shown by the full and filtered NINO3.4 
time series and power spectra (Figure S4 in Supporting Information S1).

3.  Basin interactions—Disabling communication between basins by setting the SST and SSH basin interaction 
coefficients (𝐴𝐴 𝖫𝖫A-B ) in Equation (3) to zero

4.  Reduced ocean dynamics in the Atlantic and Indian oceans—“No-SSH” forecasts by setting the the SSH 𝐴𝐴 ▲ 
elements within and between basins to zero in Equation (4).

The SST and SSH forecasts are cross-validated by sub-sampling the data by successively removing 5-yr seg-
ments (10% of data) at a time, re-estimating 𝐴𝐴 ▲ (and thereby G) using the remaining 45 independent years. Then 
12-month forecasts are generated via Equation (2) for each calendar month during the independent years. Fore-
casts are bench-marked against the untruncated (in EOF space) observations during 1965–2014 and forecast 
skill is evaluated using local anomaly correlation (AC) and root-mean-square error (RMSE) based skill score 
(RMSSS = 1 – RSMEforecast/RSMEClimate; Barnston et al., 2015). We computed the statistical significance (95% 
confidence level) of the difference between the AC values in the full and reduced LIMs using a moving block 
bootstrap Monte Carlo method (Efron & Tibshirani, 1993) with 2,000 samples. RMSSS skill maps (Figures S5–
S7) are largely consistent with those for AC shown in Section 3.
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3. Results
The full LIM has considerable skill in predicting SST and SSH anomalies at a 6-month lead in portions of the 
three basins, consistent with previous LIM forecasts (e.g., Newman & Sardeshmukh, 2017; Shin et al., 2021). AC 
values exceed 0.6 for SST in the central tropical Pacific and Indian oceans and the western Atlantic. There is high 
forecast skill for SSH in the vicinity of the Maritime Continent from the west Pacific to the eastern Indian Ocean, 
the eastern TP in the Southern Hemisphere, and most of the TA (Figure 1a). Removing the trend substantially 
reduces the LIM’s SST prediction skill in the Indian and Atlantic oceans with little change in the ENSO region, 
consistent with Ding et  al.  (2019). The skill of the detrended 6-month SSH forecasts decreases substantially 
throughout the TA and to a lesser degree in the western TP and southeastern TI (Figure 1b). After removing both 
the trend and ENSO variability the forecast skill is much lower over all three basins, with AC > 0.4 only in small 
areas of the eastern Pacific in the Southern Hemisphere for SST and the subtropics in both hemispheres for SSH 
(Figure 1c).

The change in the 6-month forecast skill resulting from the removal of basin interactions is explored in Figure 2 
(see Figure S8 in Supporting Information S1 when the data are detrended prior to decoupling). Eliminating in-
teractions between all three basins results in a substantial loss of SST forecast skill in the Indian Ocean, with AC 
values decreasing by 0.4 in all but the eastern TI (Figure 2a). Significant decreases in SST AC occur in the west-
ern and eastern Pacific and portions of the tropical Atlantic, with little change in the central Pacific. Removing 
all basin interactions also reduces SSH forecast skill, especially in the Arabian Sea and east of Madagascar in the 
Indian Ocean and in the eastern Pacific around 15°S. Most of the reduction in SST and SSH skill results from the 
interactions between the TP and the other two basins (Figure 2b). Removing TI interactions greatly reduced SST 
skill in that basin and the far western Pacific, and reduced SSH skill in the central equatorial Pacific and along the 
equator and the far eastern Atlantic (Figure 2c). There are also reductions in AC values (−0.2 to −0.4) in portions 
of the equatorial and southeast Pacific and Atlantic. Removing the TI interactions has a much stronger effect on 
12 months TP forecasts (not shown but see Figure 4). Removing TA interactions reduced SST skill within the 
basin and in the equatorial and eastern Indian Ocean, with more modest reductions in the southeast Pacific; SSH 
skill is reduced in the southeastern TP (Figure 2d). There are some regions where skill increases when removing 
interactions, but they are generally not significant.

Removing the SSH variability in the TI and TA has a modest impact on SST forecast skill throughout the tropics, 
including the entire TA (Figure 3a). Surprisingly, the largest decrease in both SST and SSH forecast skill occurs 
to the west of Central and South America, especially in the vicinity of 15°S. The AC slightly decreases in the 
vicinity of the Maritime Continent and at ∼20°S in the central Indian Ocean. Removing the trend in addition to 
removing TI and TA SSH variability (Figure 3b) further decreases the SSH skill relative to the detrended LIM 
on both sides of the equator in the central Pacific. The decrease in SSH skill off South America in the no-SSH 

Figure 1. Hindcast skill as indicated by the anomaly correlation between the 6-month lead LIM forecasts and observations 
for SST (left) and SSH (right) over the period 1964–2004. (a) Full LIM, (b) LIM constructed from detrended data (removal 
of ENM 1), and (c) LIM constructed from detrended and ENSO-filtered data (removal of ENMs 1, 4/5, and 9/10). (Top left) 
The tropical Indian (TI), Pacific (TP), and Atlantic (TA) ocean domains are separated by thick black lines. Latitude lines are 
shown at 20°N, 0°, and 20°S.
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experiment is much weaker when the trend is also removed, although there is little impact on the SST skill in 
that region.

Next, we examine the influence of the trend, basin interactions, and SSH variability on LIM SST forecasts for 
the NINO 3.4 region (5°N–5°S, 170°E–120°W). The skill, as indicated by the AC and RMSSS, is shown as a 
function of verification month and lead time in Figure 4. Both skill measures indicate the full LIM performs well 
for forecasts that verify in October-March, with AC (RMSSS) values greater than 0.8 (0.5) and 0.6 (0.2) at lead 
times of up to 4 and 9 months, respectively. The skill is much lower for forecasts that verify in April–September—
crossing boreal spring, associated with the “spring persistence barrier,” when forecasts from both dynamical 
and empirical models exhibit limited ENSO prediction skill (e.g., Levine & McPhaden, 2015; Liu et al., 2019; 
Torrence & Webster, 1998; Wright, 1979). Removing the trend has almost no impact on forecast skill (Figure 4b), 
while by design, removing the ENSO modes greatly reduces the skill (Figure 4c).

Removing the interactions between the Pacific and the other two basins reduces the NINO3.4 SST skill for 
forecasts verifying in May–October starting at leads of ∼6 months (Figure 4d). Thus, without basin interactions, 
ENSO forecast skill would be even lower in boreal summer and early fall. The reduction in both skill metrics 
exhibit a slope that occurs later in the year at longer leads, with the largest decrease in AC occurring from August 
to November at leads of 8–12 months and the maximum decrease in RMSSS during June–August at 7–9 months 
leads. TI-TP interactions influence ENSO forecast skill at leads of more than ∼4 months, which increases with 

Figure 2. The change in the 6-month (left) SST and (right) SSH forecast skill due to basin interactions as indicated by the 
difference in the anomaly correlation between the full LIM and LIMs by the removal of all interactions: (a) between all 
basins; (b) with the tropical Pacific (TP); (c) with tropical Indian (TI); and (d) with tropical Atlantic (TA) ocean basins. Grid 
squares that are not significant at the 95% level are hatched.

Figure 3. The change in the 6-month (left) SST and (right) SSH hindcast skill as indicated by the difference in the anomaly 
correlation between the full LIM and a LIM (a) with removal of all SSH terms in the Indian and Atlantic Oceans; (b) using 
the detrended LIM with no SSH anomalies in the Indian and Atlantic oceans. Non-significant values are hatched.



Geophysical Research Letters

ALEXANDER ET AL.

10.1029/2021GL096120

6 of 10

lead, although whether a change in AC is significant varies by lead and verification month (Figure 4e). The largest 
decrease occurs in summer for RMSSS but without a strong seasonal signal for AC, when TI is decoupled. When 
the TA and TP are decoupled ENSO forecast skill decreases especially for forecasts that verify in boreal summer 
at leads of 𝐴𝐴 ≥ 5 months (Figure 4f), indicating that interactions with the Atlantic reduces the spring predictability 

Figure 4. Hindcast skill of SST anomaly in the NINO 3.4 region (5°N–5°S, 170°E–120°W) as indicated by the AC (shaded) 
and RMSSS (contours, interval = 0.1, zero contour—thick solid line) as a function of verification month (x-axis) and lags of 
up to 12 months (y-axis). (a) Skill of the full LIM; (b)–(h) difference in skill (AC bottom shade scale, RMSSS interval 0.1, 
zero line thick solid line, negative values dashed) between the full LIM and altered LIMs: (b) without the trend; (c) without 
ENSO; (d) without interactions between the Pacific and other basins; (e) without interactions with the Indian Ocean; (f) 
without interactions with the Atlantic; (g) no SSH variability in the Indian and Atlantic oceans; (h) as in (g) but with the trend 
removed. Non-significant values are indicated by +signs.
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barrier, consistent with Keenlyside et al. (2013). The change in skill resulting from removing SSH anomalies in 
the TI and TA (Figure 4g) resembles the LIM without interactions with the tropical Pacific (Figure 4d) but with 
reduced amplitude, indicating that SSH-related variability in the Atlantic and Indian oceans has some influence 
the forecasts of ENSO SST anomalies, especially at longer leads from March to November. The change in skill in 
the detrended/no-SSH LIM (Figure 4h, which is relative to the detrended LIM) exhibits a similar pattern as the 
no-SSH LIM but overall the decrease in skill is reduced after detrending.

4. Summary and Discussion
We examined the role of the trend, ENSO, connections between ocean basins and dynamical processes in the 
Indian and Atlantic oceans on tropical SST and SSH forecast skill based on a linear inverse model and a set of 
reduced LIMs. The warming trend has a strong influence on the 6-month SST forecast skill in the Indian Ocean, 
western Pacific, and north tropical Atlantic but negligible effects on the central and eastern Pacific and thus 
ENSO prediction. The trend also strongly affects 6-month SSH forecasts throughout the tropical Atlantic and 
over the Maritime Continent/western Pacific. While some skill may come from predicting the trend during the 
forecast period, it primarily arises due to the conditions at initiation relative to the long-term climatology (Ding 
et al., 2019).

ENSO strongly impacts the 6-month SST forecast skill in all three basins: without ENSO and the trend there is 
almost no forecast skill in the Atlantic and Indian oceans and only limited skill in the Pacific south of the equator 
and east of the dateline. The remote influence of ENSO and tropical Pacific variability in general is further con-
firmed when basin interactions are removed, which results in a strong drop in skill throughout the Indian Ocean 
and the north tropical Atlantic. The influence of the TP on these regions primarily occurs through the “atmos-
pheric bridge,” where ENSO-driven atmospheric teleconnections influence the surface fluxes in remote ocean 
basins (e.g., Alexander et al., 2002).

Without interactions with the Indian Ocean, the SST forecast skill is substantially reduced in the western tropical 
Pacific and in the ENSO region at leads of more than ∼5 months. Zhang et al. (2021) also used a LIM-based 
ocean decoupling approach and found that the Indian Ocean SSTs, especially those associated with the dipole 
mode, influenced tropical Pacific SST variability and would thus impact ENSO forecast skill. The influence of the 
Indian Ocean dipole on ENSO may occur in the ocean via the Indonesian throughflow (Yuan et al., 2011, 2013), 
in addition to the atmosphere. In our LIM analysis, the TI also influences the SSH skill between approximately 
5°N–5°S in the central Pacific. SSH anomalies in this region could be indicative of Kelvin and near-equatorial 
Rossby waves. The subsequent propagation of these waves could influence ENSO over the subsequent months to 
multiple seasons, respectively (e.g., Battisti et al., 2018). This may partly explain why removing TI interactions 
substantially reduces ENSO forecast skill at longer lead times (Figure 4e). Since ENSO is partly cyclic, relation-
ships at longer leads with anomalies in other basins may reflect conditions that are actually driven by ENSO, 
rather than indicating an independent ENSO precursor. The remote SST anomalies, however, may also feedback 
on ENSO (Zhang et al., 2021).

The LIM framework suggests other intriguing interactions between basins, including the influence of the TI on 
SSH in the eastern Atlantic and of the TA on SSTs along the equator and in the western part of the Indian Ocean. 
Including Atlantic and Indian Ocean interactions enhance SST forecast skill in the eastern Pacific and substantial-
ly increase the SSH prediction skill west of South America around 15°S. The underlying dynamics for the latter 
source of skill is unclear but it may be related to the trend rather than direct interbasin connections (see Figure S8 
in Supporting Information S1) or result from 𝐴𝐴 ▲ not varying with the seasons (Shin et al., 2021). Removing SSH 
variability in the Indian and Atlantic Oceans has limited impact on the 6-month SST forecast skill throughout the 
tropics and on 6–12 months ENSO forecasts, suggesting an important role for thermodynamic processes within 
the Indian and Atlantic oceans and in basin interactions.

While LIM is a linear system (nonlinearities are treated as stochastic noise), modal interference cause the anoma-
ly patterns to vary in space and time. As a result, the forecast skill may not simply result from the linear addition 
of two or more processes. For example, NINO3.4 SST forecast skill slightly increases for forecasts that verify 
in January–March at leads 𝐴𝐴 ≥ 7 months when interactions between the Pacific and the two other ocean basins are 
removed in tandem (Figure 4d); in contrast, removing the TP-TI and TP-TA interactions separately (Figures 4e 
and 4f) and then summing their effects would act to decrease the forecast skill for these months/leads. Thus, 
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interaction between processes, including connections between basins, can have a complex influence on forecasts. 
Including state dependence, such as multiplicative noise and/or seasonal variations in and in a LIM, or using 
deterministic nonlinear predictors, may improve the representation of processes and thus seasonal forecasts (e.g., 
Chen et al., 2016; Martinez-Villalobos et al., 2019; Shin et al., 2021).

Data Availability Statement
HadISST data are available at https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html; ECMWF 
ORAS4 data are available at: http://apdrc.soest.hawaii.edu/datadoc/ecmwf_oras4.php.
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